Acta Crystallographica Section C

Crystal Structure

Communications

ISSN 0108-2701

catena-Poly[[bis(thiocyanato-N)-lead(II)]- μ-1,2-bis(4-pyridyl)-ethane- $N: N^{\prime}$]

Yun-Yin Nu, ${ }^{\text {a }}$ Hong-Wei Hour, ${ }^{\text {b }}$ Qian-Feng Chang, ${ }^{\text {a }}$ Xin-Quan Kin, ${ }^{\text {a }}$ Hoong-Kun Fun, ${ }^{\text {c }}$ Suchada Chantrapromma ${ }^{\mathrm{d} *}$ and Ibrahim Abdul Kazak ${ }^{\mathrm{c}}$

${ }^{\text {a }}$ Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China, ${ }^{\text {b }}$ Department of Chemistry, Zhengzhou University, Zhengzhou 450052, People's Republic of China, ${ }^{\text {c }}$ X-ray Crystallography Unit, School of Physics, Universiti Sain Malaysia, 11800 USM, Penang, Malaysia, and ${ }^{\text {d}}$ Department of Chemistry, Faculty of Science, Prince of Songkhla University, Hat-Yai, Songkhla 90112, Thailand
Correspondence e-mail: suchada@ratree.psu.ac.th

Received 2 January 2001
Accepted 12 February 2001
In the title coordination polymer, $\left[\mathrm{Pb}(\mathrm{NCS})_{2}\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\right]$, the coordination geometry about the $\mathrm{Pb}^{\mathrm{II}}$ atom is a distorted octahedron, composed of two N atoms from be ligands [be is 1,2-bis(4-pyridyl)ethane], two other N atoms from NCS^{-} groups and two neighbouring S atoms through short contacts. The trans-bpe ligands act as bridges between two $\mathrm{Pb}^{\text {II }}$ centres resulting in the formation of a linear chain. The terminal S atoms of the NCS^{-}ligands make short contacts with the $\mathrm{Pb}^{\mathrm{II}}$ atom of neighbouring chains to form an infinite twodimensional polymeric structure.

Comment

The study of coordination polymers in modern supramolecular chemistry has spawned tremendous interest in the role of multifunctional bridging ligands in determining the final type or topology of the self-assembled product. Among these basic building blocks, 4, 4^{\prime}-bipyridine and its derivatives have been widely employed for their appropriate rigidity and capacity in the construction of solid-state architecture, mostly with linear chain structures (Fujita \& Kwon, 1994; Witherly \& Blake, 1997; Losier \& Zaworotko, 1996; Hennigar et al., 1997; Lu et al., 1997). The main efforts in this field have been devoted to

(I)
their reactions with transition metals with different coordination numbers and preferences. However, there are few reports on bivalent main-group metal polymers, such as $\mathrm{Pb}^{\mathrm{II}}$

Figure 1
The structure of (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme.
polymers, with these spacers. We report here the self assembly of a two-dimensional polymer with $\mathrm{Pb}^{\mathrm{II}}$, (I).
The $\mathrm{Pb}^{\mathrm{II}}$ atom adopts a distorted octahedral geometry. The be ligand acts as a bridge between two $\mathrm{Pb}^{\mathrm{II}}$ centers resulting in the formation of a linear $\mathrm{Pb}-\mathrm{bpe}-\mathrm{Pb}$ chain. The terminal S atoms of the NCS^{-}ligands make short contacts with the $\mathrm{Pb}^{\mathrm{II}}$ atom of a neighbouring polymeric chain to form an infinite two-dimensional polymeric structure (Fig. 2).

The octahedral coordination is defined by four N atoms and two S atoms; two N atoms belong to NCS^{-}anions $[\mathrm{Pb}-\mathrm{N} 1=$ 2.413 (9) \AA and $\mathrm{Pb}-\mathrm{N} 2=2.415$ (9) \AA], two other N atoms belong to be units $\left[\mathrm{Pb}-\mathrm{N} 3=2.570(7) \AA\right.$ and $\mathrm{Pb}-\mathrm{N} 4^{\mathrm{i}}=$ 2.713 (8) \AA] and two S atoms $\left[\mathrm{Pb}-\mathrm{S} 1^{\mathrm{ii}}=3.226\right.$ (6) \AA and $\mathrm{Pb}-$ $\left.S 2^{\text {ii }}=3.196(6) \AA\right]$. The equatorial plane consists of $\mathrm{N} 1, \mathrm{~N} 2$, $\mathrm{S} 1^{\mathrm{ii}}$ and $\mathrm{S} 2^{\mathrm{ii}}$ atoms, and the axial atoms are N 3 and $\mathrm{N} 4{ }^{\mathrm{i}}$ [symmetry codes: (i) $1+x, 1+y, 1+z$; (ii) $x,-1+y, z$].

The $\mathrm{N} 3-\mathrm{Pb}-\mathrm{N} 4^{\mathrm{i}}$ angle is $160.7(3)^{\circ}$, smaller than those found in the related transition metal assemblies exhibiting $M-$ anti-bpe $-M$ bridges (Hong \& Do, 1998; Hernandez et al., 1999, 2000; Fujita et al., 1994). The chain exhibits slight zigzag

Figure 2
Packing diagram of (I) viewed down the a axis.
characteristics. The terminal NCS^{-}groups are almost linear, with $\mathrm{N}-\mathrm{C}-\mathrm{S}$ angles of 176.9 (1) and 179.2 (1) ${ }^{\circ}$. The connections between the $\mathrm{Pb}^{\mathrm{II}}$ atom and the two NCS^{-}groups are bent, with $\mathrm{Pb}-\mathrm{N}-\mathrm{C}$ angles of 145.7 (1) and 153.1 (9) ${ }^{\circ}$. It can be deduced that the bivalent main group metals exhibiting different coordination preferences influence the crystal packing and final structure of the self-assembled product.

Experimental

The title compound was synthesized by mixing successively a methanol solution of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(0.03 \mathrm{~g}, 0.1 \mathrm{mmol})$, bpe $(0.02 \mathrm{~g}$, $0.1 \mathrm{mmol})$ and $\mathrm{KNCS}(0.02 \mathrm{~g}, 0.2 \mathrm{mmol})$ at room temperature. Colourless crystals were obtained by slow evaporation of the solution.

Crystal data

$\left[\mathrm{Pb}(\mathrm{NCS})_{2}\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\right]$
$M_{r}=507.59$
Monoclinic, $P c$
$a=11.6335$ (1) \AA
$b=5.6309$ (1) \AA
$c=14.8578$ (2) \AA
$\beta=121.091$ (1) ${ }^{\circ}$
$V=833.48$ (2) \AA^{3}
$Z=2$

Data collection

Siemens SMART CCD areadetector diffractometer ω scans
Absorption correction: empirical
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.042, T_{\text {max }}=0.102$
5572 measured reflections
3678 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.089$
$S=0.92$
3678 reflections
203 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& D_{x}=2.023 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 5094 \\
& \quad \text { reflections } \\
& \theta=2.0-28.2^{\circ} \\
& \mu=10.37 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Prism, colourless } \\
& 0.42 \times 0.28 \times 0.22 \mathrm{~mm}
\end{aligned}
$$

3398 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.050$
$\theta_{\text {max }}=28.2^{\circ}$
$h=-15 \rightarrow 15$
$k=-7 \rightarrow 3$
$l=-19 \rightarrow 18$
Intensity decay: negligible

$$
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)\right]
$$

$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=1.38 \mathrm{e}^{\circ}{ }^{-3}$
$\Delta \rho_{\min }=-1.64 \mathrm{e}^{-3}$
Extinction correction: SHELXTL
(Sheldrick, 1997)
Extinction coefficient: 0.0199 (10)
Flack parameter $=0.006(9)$

After checking their presence in the difference map, all H atoms were geometrically fixed, but their displacement parameters were allowed to refine. The $\mathrm{C}-\mathrm{H}$ distances for H atoms attached to C 8 and C 9 were set at $0.97 \AA$; all other $\mathrm{C}-\mathrm{H}$ distances were set at $0.93 \AA$. The maximum and minimum electron-density peaks are located 1.03 and $1.16 \AA$, respectively, from the Pb atom.

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Pb}-\mathrm{N} 2$	$2.415(9)$	$\mathrm{Pb}-\mathrm{N} 3$	$2.570(7)$
$\mathrm{Pb}-\mathrm{N} 1$	$2.413(9)$	$\mathrm{Pb}-\mathrm{N} 4^{\mathrm{i}}$	$2.713(8)$
$\mathrm{N} 2-\mathrm{Pb}-\mathrm{N} 1$	$81.1(3)$	$\mathrm{N} 3-\mathrm{Pb}-\mathrm{N} 4^{\mathrm{i}}$	$160.7(3)$
$\mathrm{N} 2-\mathrm{Pb}-\mathrm{N} 3$	$89.6(4)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Pb}$	$153.1(9)$
$\mathrm{N} 1-\mathrm{Pb}-\mathrm{N} 3$	$81.2(3)$	$\mathrm{C} 2-\mathrm{N} 2-\mathrm{Pb}$	$145.7(10)$
$\mathrm{N} 2-\mathrm{Pb}-\mathrm{N} 4^{\mathrm{i}}$	$75.7(4)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 1$	$179.2(11)$
$\mathrm{N} 1-\mathrm{Pb}-\mathrm{N} 4^{\mathrm{i}}$	$84.3(3)$	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{S} 2$	$176.9(12)$

Symmetry code: (i) $1+x, 1+y, 1+z$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 1990).

This work was supported by the National Natural Science Foundation of China (Nos. 29941001 and 29631040) and the Natural Science Foundation of Henan Province (No. 994030800). The authors would like to thank the Malaysian Government and Universiti Sains Malaysia for research grant R\&D No. 305/PFIZIK/610942.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1453). Services for accessing these data are described at the back of the journal.

References

Fujita, M. \& Kwon, Y. J. (1994). J. Am. Chem. Soc. 116, 1151-1152.
Fujita, M., Kwon, Y. J., Miyazawa, M. \& Ogura, K. (1994). J. Chem. Soc. Chem. Commun. pp. 1977-1978.
Hennigar, T. L., Macquarrie, D. C., Lesier, P., Regers, R. D. \& Zaworotko, M. J. (1997). Angew. Chem. Int. Ed. Engl. 36, 972-975.

Hernandez, M. L., Barandika, M. G., Urtiaga, M. K., Cortes, R., Lezama, L. \& Arriortua, M. I. (2000). J. Chem. Soc. Dalton Trans. pp. 79-84.
Hernandez, M. L., Barandika, M. G., Urtiaga, M. K., Cortes, R., Lezama, L., Arriortua, M. I. \& Rojo, T. (1999). J. Chem. Soc. Dalton Trans. pp. 14011404.

Hong, C. S. \& Do, Y. (1998). Inorg. Chem. 37, 4470-4476.
Losier, P. \& Zawarotko, M. J. (1996). Angew. Chem. Int. Ed. Engl. 35, 27792782.

Lu, J., Paliwala, T., Lim, S., Yu, C., Niu, T. \& Jacobson, A. (1997). Inorg. Chem. 36, 923-929.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL Software Reference Manual. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Witherly, M. A. \& Blake, A. J. (1997). Angew. Chem. Int. Ed. Engl. 36, 23272329.

